Stabilizer rank and higher-order Fourier analysis

نویسندگان

چکیده

We establish a link between stabilizer states, rank, and higher-order Fourier analysis -- still-developing area of mathematics that grew out Gowers's celebrated Fourier-analytic proof Szemer\'edi's theorem \cite{gowers1998new}. observe $n$-qudit states are so-called nonclassical quadratic phase functions (defined on affine subspaces $\mathbb{F}_p^n$ where $p$ is the dimension qudit) which fundamental objects in analysis. This allows us to import tools from this theory analyze rank quantum states. Quite recently, \cite{peleg2021lower} it was shown $n$-qubit magic state has $\Omega(n)$. Here we show qudit analog $\Omega(n)$, generalizing their result qudits any prime dimension. Our techniques use explicitly believe example motivates further exploration applications information theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher-Order Low-Rank Regression

This paper proposes an efficient algorithm (HOLRR) to handle regression tasks where the outputs have a tensor structure. We formulate the regression problem as the minimization of a least square criterion under a multilinear rank constraint, a difficult non convex problem. HOLRR computes efficiently an approximate solution of this problem, with solid theoretical guarantees. A kernel extension i...

متن کامل

Using higher-order Fourier analysis over general fields

Higher-order Fourier analysis, developed over prime fields, has been recently used in different areas of computer science, including list decoding, algorithmic decomposition and testing. We extend the tools of higher-order Fourier analysis to analyze functions over general fields. Using these new tools, we revisit the results in the above areas. (i) For any fixed finite field K, we show that th...

متن کامل

On Higher-Order Fourier Analysis over Non-Prime Fields

The celebrated Weil bound for character sums says that for any low-degree polynomial P and any additive character χ, either χ(P ) is a constant function or it is distributed close to uniform. The goal of higher-order Fourier analysis is to understand the connection between the algebraic and analytic properties of polynomials (and functions, generally) at a more detailed level. For instance, wha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Quantum

سال: 2022

ISSN: ['2521-327X']

DOI: https://doi.org/10.22331/q-2022-02-09-645